CSC-340

Cryptographic
Analysis of Data
Recovery on
Encrypted Systems

Jack Sabol, Brendan Cordwell, and Tanmay
Agarwal

Table of Contents

01 Introduction 0 4

Research
1 02 Questions 05

i 03 Methodology 0 6

—

Implementation
Details

Demonstration

Results &
Conclusion

01 | Introduction

e Encryption protects sensitive data by making it
unreadable without the correct key.

e Systems like LUKS (Linux) and BitLocker (Windows)
secure storage using strong cryptographic methods.

e Evenwith encryption, weak passwords, poor
configurations, and old algorithms can expose
vulnerabilities.

Purpose: This project analyzes how encryption works, where
weaknesses appear, and when encrypted data can be
recovered.

02 | Research Questions

What weaknesses exist in encryption systems like
LUKS and BitLocker?

02 03

How can encrypted data be recovered when these What steps can help make encryption stronger
weaknesses are found? and more secure?

03 | Methodology

Detection & Recovery Attempts

Experimenting & Testing

Created virtual machines
running Kali Linux and
Windows 11

Encrypted disks with LUKS
and BitLocker using both
strong and intentionally
weak settings

Used synthetic test data to
avoid exposing sensitive
information

Simulated weaknesses:
simple passwords, lower
iteration counts, outdated
configurations

Ran password-recovery tools

(John the Ripper, Hashcat)
using dictionary, hybrid, and
brute-force attacks.

Captured VM snapshots to
analyze RAM for key
material or decrypted data
fragments.

Used Autopsy to examine
decrypted disk images and

check for partially recovered

files.

Analysis

Compared success rates
of attacks against
different configurations.

Evaluated LUKS vs.
BitLocker resistance to
cracking and key
extraction.

Identified which settings
and passwords made
systems vulnerable.

04 | Implementation Details

System Setup

e Two VMs: one Linux (LUKS), one
Windows (BitLocker).

e Created:

o Strong LUKS config
(AES-XTS-512, long
passphrase, high PBKDF2
iterations).

o Weak LUKS config (short
passphrase, reduced
iterations).

o BitLocker TPM-only mode
and password-only mode.

e Added synthetic user files for
realistic testing

Tools

Hashcat & John the Ripper:
password-cracking attempts

RAM snapshot analysis:
looked for decrypted data or
key remnants

Autopsy: inspected disk
images after recovery
attempts

Testing Scenarios

Weak vs. strong passwords

Old vs. modern encryption
settings

BitLocker TPM-only vs.
password-only

System states: unlocked,
locked, suspended,
shutdown

05 | Demonstration

—

06 | Results & Conclusions

Results

e Weak passwords were cracked quickly
o Dictionary passwords: cracked within minutes.
o Short brute-force passwords: cracked within several hours.
o 12-14+ character passphrases: no measurable progress during testing.

e LUKS performance depended on iteration counts
o Higher PBKDF2 iterations — much slower guessing rate.
o Lower iteration counts — fast enough to make brute-force practical.

e BitLocker password-only mode allowed more guesses
o BitLocker’s hashing allowed more guesses per second than LUKS.
o Weak BitLocker passwords were noticeably easier to crack.

e TPM-only BitLocker blocked password attacks
o No password-derived material — password attacks impossible.
o Ifunlocked, the system gave full access, so physical security mattered.

06 | Results & Conclusions

e Memory analysis

o Unlocked systems: partial key material or decrypted data could appear.

o Suspended systems: sometimes showed more data due to RAM preservation.
o Full shutdown: no key material recovered on either LUKS or BitLocker.

o Hibernation files were encrypted — no useful remnants found.

e Weakorincorrect configurations caused most failures
o Low LUKS iterations + weak passwords — successful recovery.
o Strong passphrases + strong settings — no successful attacks.

Conclusion

e LUKS and BitLocker are secure when properly configured.
e Most vulnerabilities came from weak passwords and poor settings, not the encryption algorithms.

e Strong passphrases, modern configurations, and securing active devices are the best defenses.

References

[1] L. Gasser and I. Aad, “Disk, File and Database Encryption,” in Trends in Data Protection and Encryption Technologies,
Springer, 2023, pp. 201-207. doi: 10.1007/978-3-031-33386-6 33.

[2] B. A. Sassani, “Evaluating Encryption Algorithms for Sensitive Data Using HDD, SSHD and SSD Based NAND MLC Flash
Memory,” Scientific World Journal, vol. 2020, Article ID 6132312, 2020. doi:10.1155/2020/6132312.

[3] C. Maartmann-Moe, S. E. Thorkildsen, and A. Aarnes, “The Persistence of Memory: Forensic Identification and Extraction of
Cryptographic Keys,” Digital Investigation, vol. 6, pp. S132-S140, 2009. doi: 10.1016/5.d1in.2009.06.002.

[4] H. Afzal, M. Yousaf, H. Afzal, N. Alharbe, and M. R. Mufti, “Cryptographic Strength Evaluation of Key Schedule
Algorithms,” Security and Communication Networks, vol. 2020, Article ID 3189601, 2020. doi: 10.1155/2020/3189601.

[5] S. B. Alkhadhr, “Cryptography and randomization to dispose of data and protect confidentiality,” Cogent Engineering, vol. 4,
no. 1, 2017. doi: 10.1080/23311916.2017.1300049.

[6] T. Gross, M. Busch, and T. Muller, “One Key to Rule Them All: Recovering the Master Key from RAM to Break Android’s
File-Based Encryption,” Forensic Science International: Digital Investigation, vol. 36, p. 301113, 2021. doi:
10.1016/;.sidi.2021.301113

THANK YOU!

