
Cryptographic 
Analysis of Data 
Recovery on 
Encrypted Systems
Jack Sabol, Brendan Cordwell, and Tanmay 
Agarwal

CSC-340



Table of Contents

01 Introduction

Research 
Questions

Methodology

02

03

04

05

06

Implementation 
Details

Demonstration

Results & 
Conclusion



01 | Introduction
● Encryption protects sensitive data by making it 

unreadable without the correct key.

● Systems like LUKS (Linux) and BitLocker (Windows) 
secure storage using strong cryptographic methods.

● Even with encryption, weak passwords, poor 
configurations, and old algorithms can expose 
vulnerabilities.

Purpose: This project analyzes how encryption works, where 
weaknesses appear, and when encrypted data can be 
recovered.



How can encrypted data be recovered when these 
weaknesses are found?

What weaknesses exist in encryption systems like 
LUKS and BitLocker?

What steps can help make encryption stronger 
and more secure? 

02 | Research Questions

01

02 03



03 | Methodology
Experimenting & Testing

● Created virtual machines 
running Kali Linux and 
Windows 11

● Encrypted disks with LUKS 
and BitLocker using both 
strong and intentionally 
weak settings

● Used synthetic test data to 
avoid exposing sensitive 
information

● Simulated weaknesses: 
simple passwords, lower 
iteration counts, outdated 
configurations

Detection & Recovery Attempts

● Ran password-recovery tools 
(John the Ripper, Hashcat) 
using dictionary, hybrid, and 
brute-force attacks.

● Captured VM snapshots to 
analyze RAM for key 
material or decrypted data 
fragments.

● Used Autopsy to examine 
decrypted disk images and 
check for partially recovered 
files.

Analysis

● Compared success rates 
of attacks against 
different configurations.

● Evaluated LUKS vs. 
BitLocker resistance to 
cracking and key 
extraction.

● Identified which settings 
and passwords made 
systems vulnerable.



04 | Implementation Details
System Setup

● Two VMs: one Linux (LUKS), one 
Windows (BitLocker).

● Created:
○ Strong LUKS config 

(AES-XTS-512, long 
passphrase, high PBKDF2 
iterations).

○ Weak LUKS config (short 
passphrase, reduced 
iterations).

○ BitLocker TPM-only mode 
and password-only mode.

● Added synthetic user files for 
realistic testing

Tools Testing Scenarios

● Hashcat & John the Ripper: 
password-cracking attempts

● RAM snapshot analysis: 
looked for decrypted data or 
key remnants

● Autopsy: inspected disk 
images after recovery 
attempts

● Weak vs. strong passwords

● Old vs. modern encryption 

settings

● BitLocker TPM-only vs. 

password-only

● System states: unlocked, 

locked, suspended, 

shutdown



05 | Demonstration



06 | Results & Conclusions
Results

● Weak passwords were cracked quickly
○ Dictionary passwords: cracked within minutes.
○ Short brute-force passwords: cracked within several hours.
○ 12–14+ character passphrases: no measurable progress during testing.

● LUKS performance depended on iteration counts
○ Higher PBKDF2 iterations → much slower guessing rate.
○ Lower iteration counts → fast enough to make brute-force practical.

● BitLocker password-only mode allowed more guesses
○ BitLocker’s hashing allowed more guesses per second than LUKS.
○ Weak BitLocker passwords were noticeably easier to crack.

● TPM-only BitLocker blocked password attacks
○ No password-derived material → password attacks impossible.
○ If unlocked, the system gave full access, so physical security mattered.



06 | Results & Conclusions
● Memory analysis

○ Unlocked systems: partial key material or decrypted data could appear.
○ Suspended systems: sometimes showed more data due to RAM preservation.
○ Full shutdown: no key material recovered on either LUKS or BitLocker.
○ Hibernation files were encrypted → no useful remnants found.

● Weak or incorrect configurations caused most failures
○ Low LUKS iterations + weak passwords → successful recovery.
○ Strong passphrases + strong settings → no successful attacks.

Conclusion

● LUKS and BitLocker are secure when properly configured.

● Most vulnerabilities came from weak passwords and poor settings, not the encryption algorithms.

● Strong passphrases, modern configurations, and securing active devices are the best defenses.



[1] L. Gasser and I. Aad, “Disk, File and Database Encryption,” in Trends in Data Protection and Encryption Technologies, 
Springer, 2023, pp. 201–207. doi: 10.1007/978-3-031-33386-6 33.

[2] B. A. Sassani, “Evaluating Encryption Algorithms for Sensitive Data Using HDD, SSHD and SSD Based NAND MLC Flash 
Memory,” Scientific World Journal, vol. 2020, Article ID 6132312, 2020. doi:10.1155/2020/6132312.

[3] C. Maartmann-Moe, S. E. Thorkildsen, and A. Aarnes, “The Persistence of Memory: Forensic Identification and Extraction of 
Cryptographic Keys,” Digital Investigation, vol. 6, pp. S132–S140, 2009. doi: 10.1016/j.diin.2009.06.002.

[4] H. Afzal, M. Yousaf, H. Afzal, N. Alharbe, and M. R. Mufti, “Cryptographic Strength Evaluation of Key Schedule 
Algorithms,” Security and Communication Networks, vol. 2020, Article ID 3189601, 2020. doi: 10.1155/2020/3189601.

[5] S. B. Alkhadhr, “Cryptography and randomization to dispose of data and protect confidentiality,” Cogent Engineering, vol. 4, 
no. 1, 2017. doi: 10.1080/23311916.2017.1300049.

[6] T. Gross, M. Busch, and T. Muller, “One Key to Rule Them All: Recovering the Master Key from RAM to Break Android’s 
File-Based Encryption,” Forensic Science International: Digital Investigation, vol. 36, p. 301113, 2021. doi: 
10.1016/j.fsidi.2021.301113

References



THANK YOU!


